Bounds on exceptional Dehn filling
نویسنده
چکیده
We show that for a hyperbolic knot complement, all but at most 12 Dehn fillings are irreducible with infinite word-hyperbolic fundamental group. AMS Classification numbers Primary: 57M50, 57M27 Secondary: 57M25, 57S25
منابع مشابه
Bounds on Exceptional Dehn Filling Ii
We show that there are at most finitely many one cusped orientable hyperbolic 3-manifolds which have more than eight non-hyperbolic Dehn fillings. Moreover, we show that determining these finitely many manifolds is decidable.
متن کاملDehn filling with non-degenerate boundary slope rows
We prove that Dehn filling a small link exterior with a non-degenerate boundary slope row produces a 3-manifold which is either Haken and ∂-irreducible or one of very restricted typies of reducible manifolds (Theorem 2), generalizing a result of Culler, Gordon, Luecke and Shalen in the case of a knot exterior (Theorem 1). The result provides some interesting applications on exceptional Dehn fil...
متن کاملDehn Fillings of Knot Manifolds Containing Essential Once-punctured Tori
In this paper we study exceptional Dehn fillings on hyperbolic knot manifolds which contain an essential once-punctured torus. Let M be such a knot manifold and let β be the boundary slope of such an essential once-punctured torus. We prove that if Dehn filling M with slope α produces a Seifert fibred manifold, then ∆(α, β) ≤ 5. Furthermore we classify the triples (M ;α, β) when ∆(α, β) ≥ 4. Mo...
متن کاملReducible And Finite Dehn Fillings
We show that the distance between a finite filling slope and a reducible filling slope on the boundary of a hyperbolic knot manifold is at most one. Let M be a knot manifold, i.e. a connected, compact, orientable 3-manifold whose boundary is a torus. A knot manifold is said to be hyperbolic if its interior admits a complete hyperbolic metric of finite volume. Let M(α) denote the manifold obtain...
متن کاملExceptional Dehn filling
This Research in Team workshop focused on several problems in the theory of exceptional Dehn fillings in 3dimensional topology. Dehn filling is the construction in which you take a 3-manifoldM , with a distinguished torus boundary component T , and glue a solid torus V to M via some homeomorphism from ∂V to T . The resulting manifold depends only on the isotopy class (slope) α on T that is iden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000